Mam dwie kolumny StartTime i EndTime, muszę wybrać wydarzenia, które mają miejsce między 7-9 a 18-20. Do tej pory próbowałem:

+------------+--------------------------------+-------------------------------+
|            |                StartTime       |            EndTime            |
+------------+--------------------------------+-------------------------------+
|        25  | 2018-05-17 11:52:21.769491600  | 2018-05-17 23:08:35.731376400 |
|        32  | 2018-05-19 14:22:24.141359000  | 2018-05-19 18:37:04.003643800 |
|        42  | 2018-05-22 08:25:01.015975500  | 2018-05-22 22:32:34.249869500 |
|        43  | 2018-05-22 08:46:06.187427200  | 2018-05-22 21:29:17.397438000 |
|        44  | 2018-05-22 13:38:37.289871700  | 2018-05-22 18:38:36.498623500 |
+------------+--------------------------------+-------------------------------+

Wyodrębniłem godziny z danych i wykorzystałem je do obliczenia następnych

df = df[((df['start_hr']<=7) & (df['end_hr']>=9)) | ((df['start_hr']<=18) & (df['end_hr']>=20))]

Czy istnieje bardziej dokładna i szybsza alternatywa?

2
M_S_N 12 marzec 2020, 13:09

2 odpowiedzi

Najlepsza odpowiedź

Zwiększy to na chwilę zużycie pamięci, ale możesz zrobić coś takiego, w którym utworzysz dwie kolumny tymczasowe i użyjesz na nich "df.query". Pamiętaj, aby później usunąć kolumny.

df = df.assign(start_hr=df.start_hr.dt.hour, end_hr=df.end_hr.dt.hour)

df.query('(start_hr <= 7  and end_hr >=9) or (start_hr <= 18  and end_hr >=20) ')
1
Diego 12 marzec 2020, 10:38

Możesz użyć tego:


df['start_hr'] = pd.to_datetime(df['start_hr']) 
df['end_hr'] = pd.to_datetime(df['end_hr'])

df['start_hr_day'] = df['start_hr'].dt.day
df['end_hr_day'] = df['start_hr'].dt.day 

df.loc[((df['start_hr_day']<=7) & (df['end_hr_day']>=9))|((df['start_hr_day']<=18) & (df['end_hr_day']>=20))]

0
Barış Can Tayiz 12 marzec 2020, 10:17